SET-1

II B. Tech II Semester Regular Examinations, May/June - 2015 STRENGTH OF MATERIALS - II

(Civil Engineering)
Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any THREE Questions from Part-B

PART-A

1. a) If the principal stresses at a point in an elastic material are $2 f$ tensile, $1.5 f$ tensile and f compressive, calculate the value of ' f ' at failure according to the maximum principal strain theory. The elastic limit in simple tension is $210 \mathrm{~N} / \mathrm{mm}^{2}$ and Poisson's ratio is 0.30 .
b) A 450 kW of power has to transmit at $100 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Find the suitable diameter of hollow circular section, the inside diameter being $3 / 4$ of the external diameter. Take allowable shear stress as $70 \mathrm{~N} / \mathrm{mm}^{2}$.
c) Write and explain about the limitations of Euler's Formula.
d) Find core diameter of a solid section, if diameter is ' d '.
e) Explain the concept of unsymmetrical bending. What are the conditions that should be satisfied for a beam to bend without twisting?
f) Explain the procedure for tension coefficient method in statically determinate frame.

$$
(4 M+4 M+3 M+4 M+4 M+3 M)
$$

PART-B

2. Direct stresses of $120 \mathrm{~N} / \mathrm{mm}^{2}$ (tensile) and $90 \mathrm{~N} / \mathrm{mm}^{2}$ (compressive) exist on two perpendicular planes at a certain point in a body. They are also accompanied by shear stress on the planes. The greatest principal stress at the point due to these is $150 \mathrm{~N} / \mathrm{mm}^{2}$.
i) What must be the magnitude of the shearing stresses on the two planes?
ii) What will be the maximum shearing stress at the point?
3. a) Derive the torsion equation from fundamentals $T / J=q / r=N \theta / L$ with usual notation.
b) A solid steel shaft has to transmit 75 kW at 200 r.p.m., taking allowable shear stress as 70 $\mathrm{N} / \mathrm{mm}^{2}$. Find the diameter for the shaft, if maximum torque transmitted at each revolution exceeds the mean by 30%.

1 of 2
WWW.MANARESULTS.CO.IN
4. A hollow rectangular column of external depth 1 m and external width 1 m is 10 cm thick. Calculate the maximum and minimum stress in the section of the column, if vertical load of 200 kN is acting with an eccentricity of 20 cm .
5. A beam carries a UDL of $50 \mathrm{kN} / \mathrm{m}$ over a span of 2 m long, with an axial compressive load of 50 kN . The beam section is rectangular, having depth equal to 240 mm and width equal to 120 mm . Compute (i) maximum fibre stress, (ii) fibre stress at a point 0.5 m from the left end of the beam and 80 mm below the N.A.
6. A beam of rectangular section, 80 mm wide and 10 mm deep is subjected a bending moment of $12 \mathrm{kN}-\mathrm{m}$. The trace of the plane of loading is included at 45° to the $\mathrm{Y}-\mathrm{Y}$ axis of the section. Locate the neutral axis of the section and calculate the maximum bending stress induced in the section.
7. A cantilever truss is loaded as shown in Figure 1. Analyze the truss by method of sections.

Figure 1

II B. Tech II Semester Regular Examinations, May/June - 2015 STRENGTH OF MATERIALS - II

(Civil Engineering)
Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any THREE Questions from Part-B

PART-A

1. a) In a piece of material, a tensile stresses $p 1$ and a shearing q act on a given plane. Show that principal stresses are always of opposite sign.
b) Write the assumptions made in the theory of torsion.
c) Calculate Euler's critical stress for the column having slenderness ratio 100,150 with both ends hinged. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
d) Find core diameter of a hollow section, if external and internal diameter are ' D ' and ' d '.
f) State the assumptions made in analyzing a beam for unsymmetrical bending.
g) Explain the procedure for method of sections in statically determinate frame.

$$
(4 M+3 M+4 M+4 M+3 M+4 M)
$$

PART-B

2. A circular shaft 100 mm diameter is subjected to combined bending and twisting of moments the B.M being 3 times the twisting moment. If the direct tensile yield point of the material is $350 \mathrm{~N} / \mathrm{mm}^{2}$, and the factor of safety is 4, calculate the allowable twisting moment according to the following theories of failures. (i). maximum principle stress theory, (ii) shear strain energy theory, if the simple shear is not to exceed $60 \mathrm{~N} / \mathrm{mm}^{2}$.
3. Derive the maximum shear stress induced, in the wire of a closed-coiled helical spring which carries an axial load W . Assume mean radius of spring coil is R and diameter of spring wire is d.
4. In an experimental determination of the buckling load for a rod 12 mm mild steel pin ended struts of various lengths, two of the values obtained were: (a) When the length is 50 cm load is 10 kN and (b) When the length is 20 cm load is 30 kN .

Make necessary calculations and state whether either of the values of the loads, confirm with
Euler's formula for the critical load. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
WWW. MANARE $S_{1} \mathrm{U}_{\mathrm{f}} \mathrm{TS}$. CO. IN
|"|"||"||"|||||
5. A hollow rectangular column of external depth 1 m and external width 1 m is 10 cm thick. Calculate the maximum and minimum stress in the section of the column if vertical load of 200 kN is acting with an eccentricity of 20 cm .
6. Determine the principal moments of Inertia for an angle section $225 \times 175 \times 15 \mathrm{~mm}$.
7. A cantilever truss is loaded as shown in Figure 1. Analyze the truss by method of joints.

Figure 1

II B. Tech II Semester Regular Examinations, May/June - 2015 STRENGTH OF MATERIALS - II

(Civil Engineering)
Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any THREE Questions from Part-B

PART-A

1. a) Show that the greatest shear strain is equal to greatest difference of principal strains.
b) Find the maximum torque that can be safely applied to a shaft of 200 mm diameter, if the permissible shear stress is $45 \mathrm{~N} / \mathrm{mm}^{2}$.
c) An I-section joist ISWB400 and 8 m long is used as a strut with both ends fixed, determine Euler's crippling load. Give for the section Ixx $=23426.7 \mathrm{~cm}^{4}, \quad$ Iyy $=1388.0 \mathrm{~cm}^{4}$ and $\mathrm{E}=$ $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
d) Find maximum eccentricity of the rectangular section (width b and depth d) for no tension in the section.
f) Explain the concept of unsymmetrical bending. What are the conditions that should be satisfied for a beam to bend without twisting?
g) Determine the forces in the members of equilateral triangle truss of span ' L ' loaded with a point load 'W'.
$(4 \mathrm{M}+3 \mathrm{M}+4 \mathrm{M}+4 \mathrm{M}+4 \mathrm{M}+3 \mathrm{M})$

PART-B

2. An element is subjected to tensile stresses of $60 \mathrm{~N} / \mathrm{mm}^{2}$ and $20 \mathrm{~N} / \mathrm{mm}^{2}$ acting on two perpendicular planes and is also accompanied by shear stress of $20 \mathrm{~N} / \mathrm{mm}^{2}$ on these planes. Draw the Mohr's circle of stresses and determine the magnitudes and directions of principal stresses and also the greatest shear stress.
3. A leaf spring carries a central load of 3000 N . The leaf spring has to be made of 10 steel plates 5 cm wide and 6 mm thick. If the bending stress is limited to $150 \mathrm{~N} / \mathrm{mm}^{2}$ determine: (i) length of the spring and (ii) deflection at the centre of the spring. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

1 of 2
WWW.MANARESULTS.CO.IN
4. a) Derive Euler's buckling load formula of a long column pinned at both ends.
b) A solid round bar 3 m long and 5 cm in diameter is used as a strut with one end is fixed and other is hinged. Determine the crippling load. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
5. A short column of external diameter 40 cm and internal diameter 20 cm carries an eccentric load of 80 kN . Find the greatest eccentricity which the load can have without producing tension on the cross -section.
6. A rectangular section of dimensions $120 \times 200 \mathrm{~mm}$ is used as a beam on a 3 m span, If the beam is loaded by a concentrated load (P) at the centre at 30° to the vertical (Y-Y axis). Find the maximum value of the load ' P ' in kN , if the maximum bending stress is not to exceed 12 MPa.
7. Determine the member forces of the truss shown in Figure 1, using method of joints.

Figure 1

II B. Tech II Semester Regular Examinations, May/June - 2015 STRENGTH OF MATERIALS - II

(Civil Engineering)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any THREE Questions from Part-B

PART-A

1. a) Discuss briefly the maximum principal stress theory.
b) A solid shaft is required to transmit 120 kW power at $200 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Find the suitable diameter of the shaft if maximum torque transmitted in each revelation exceeds the mean by 20%. Take allowable shear stress as $70 \mathrm{~N} / \mathrm{mm}^{2}$.
c) Calculate Euler's critical stress for the column having slenderness ratio 150, 200 with both ends fixed. Take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
d) Explain about the term kernel and determine the size of kernel for a rectangular 200 mm x 300 mm .
f) State the assumptions made in analyzing a beam for unsymmetrical bending.
g) Explain the procedure for tension coefficient method in statically determinate frame.
$(4 \mathrm{M}+4 \mathrm{M}+3 \mathrm{M}+4 \mathrm{M}+3 \mathrm{M}+4 \mathrm{M})$

PART-B

2. Derive an expression for the major and minor principal stresses on an oblique plane, when the body is subjected to direct stresses in two mutually perpendicular directions accompanied by a shear stress
3. a) Derive the maximum shear stress induced, in the wire of a closed-coiled helical spring which carries an axial load W . Assume mean radius of spring coil is R and diameter of spring wire is d .
b) A leaf spring carries a central load of 3000 N . The leaf spring has to be made of 10 steel plates 5 cm wide and 6 mm thick, if the bending stress is limited to $150 \mathrm{~N} / \mathrm{mm}^{2}$. Determine: (i) length of the spring and (ii) deflection at the centre of the spring. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
4. A 1.5 m long column has a circular cross section of 5 cm diameter, one of the ends of the column is fixed in direction and position, and the other end is free. Taking factory of safety as 3, calculate the safe load using: (i) Rankin's formula, take yield stress is $560 \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{a}=$ $1 / 1600$ for pinned ends, (ii) Euler's formula, Young's Modulus for the material is 1.2×10^{5} $\mathrm{N} / \mathrm{mm}^{2}$.
5. A square chimney, 30 m high, has a flue opening of size $1.5 \mathrm{~m} \times 1.5 \mathrm{~m}$. Find the minimum width required at the base for no tension if the masonry weights $20 \mathrm{kN} / \mathrm{m}^{3}$ and the wind pressure is $1.5 \mathrm{kN} / \mathrm{m}^{2}$. The permissible stress in the masonry is $1 \mathrm{kN} / \mathrm{m}^{2}$.
6. A T-Section of dimensions 150 wide $\times 200 \mathrm{~mm}$ deep, with 10 mm thickness of flange and web, is used as simply supported a beam on a span of 6 m . Find the maximum value of ' w ' in kN / m, the permissible stress in the material is 120 MPa . The plane of loading is inclined at an angle of 40° to the vertical plane.
7. Determine the member forces of the truss shown in Figure 1, using method of sections.

Figure 1

II B. Tech II Semester Supplementary Examinations, November - 2020 STRENGTH OF MATERIALS - II
(Civil Engineering)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any THREE Questions from Part-B

PART -A

1. a) What are different failures?
b) Write about axial couple.
c) Write the expression for buckling load (or) Crippling load when both ends of the

Columns are fixed? Explain each term.
d) Write the conditions for stability.
e) What are the types of beams?
f) Write the conditions of equilibrium.

PART - B

2. In a material the principal stresses are $60 \mathrm{MN} / \mathrm{m}^{2}, 48 \mathrm{MN} / \mathrm{m}^{2}$ and $-36 \mathrm{MN} / \mathrm{m}^{2}$.

Calculate
(i) Total strain energy
(ii) Volumetric strain energyP
(iii) Shear strain energy
(iv) Factor of safety on the total strain energy criteria if the material yields at $120 \mathrm{MN} / \mathrm{m}^{2}$.
Take $\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}$ and $1 / \mathrm{m}=0.3$
3. A shaft is required for transmitting a power of 60 kW running at a speed of 750 rpm. if the available shaft material has permissible shear strength of $36 \mathrm{~N} / \mathrm{mm}^{2}$ and rigidity modulus of $96 \mathrm{kN} . \mathrm{mm}$ design a hollow shaft such that the inner diameter is 0.6 times the outer diameter.
4. A mild steel tube 4 m long, 3 cm internal diameter and 4 mm thick is used as a strut with both ends hinged. Find the collapsing load, what will be the crippling load if
(i) Both ends are built-in.
(ii) One end is built-in and one end is free
5. (a) Determine stresses in case of chimney with suitable example
(b) What is the core of a section. Calculate core for the rectangular section
6. (a) What do you mean by unsymmetrical bending?
(b) A beam of rectangular section 80 mm wide and 120 mm deep is subjected to a bending moment of 12 kN .m The trace of the plane of loading is inclined at 45° to the $y-y$ axis of the section. Locate the neutral axis of the section and calculate the maximum bending stress induced is the section
7. Explain method of tension coefficients, and explain why it is preferred to analyze (16M) the trusses.

II B. Tech II Semester Supplementary Examinations, November - 2019 STRENGTH OF MATERIALS - II

(Civil Engineering)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any THREE Questions from Part-B

PART -A

1. a) Define Normal stress and Tangential stress.
b) What are the different Types of springs?
c) What are the assumptions of Euler's theorem for long columns?
d) What are the different types of beam?
e) What is unsymmetrical bending?
f) Define indeterminacy with suitable example.

PART -B

2. In a material the principal stresses are $50 \mathrm{~N} / \mathrm{mm}^{2}, 40 \mathrm{~N} / \mathrm{mm}^{2}$ and $-30 \mathrm{~N} / \mathrm{mm}^{2}$, calculate:
(i) Total strain energy
(ii) Volumetric strain energy
(iii) Shear strain energy and
(iv) Factor of safety on the total strain energy criterion if the material yield at $100 \mathrm{~N} / \mathrm{mm}^{2}$.
Take $\mathrm{E}=200 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$ and poission ratio $=0.28$
3. A carriage spring consists of 6 plates of steel, the cross section of each plate being 60 mm wide and 6 mm thick. The length of the longest plate is 1040 mm . the central load required to straighten the spring is 4 KN . Modulus of elasticity of the material of the spring $=2 \times 10 \mathrm{~N} / \mathrm{mm}$. Calculate the deflection in the spring.
4. (a) A steel column is of length 8 m and diameter 600 mm with both ends hinged. Determine the crippling load by Euler's formula. Take E = $2.1 \times 105 \mathrm{~N} / \mathrm{mm} 2$
(b) Derive the expression for crippling load when column with one end fixed and other end hinged.
5. A hollow rectangular masonry pier is $1.2 \mathrm{~m} \times 0.8 \mathrm{~m}$ wide and 150 mm thick. A vertical load of 2 MN is transmitted in the vertical plane bisecting 1.2 m side and at an eccentricity of 100 mm from the geometric axis of the section. Calculate the maximum and minimum stress intensities in the section.

1 of 2
\|"|"||"|"||||| WWw.manaresults.co.in
6. A beam of rectangular cross section is subjected to pure bending with a moment of $20 \mathrm{kN} . \mathrm{m}$. The trace of the plane of loading is inclined at 45° to the YY axis of the section. Identify the N.A of the section and calculate the bending stress induced at each corner of the beam section
7.

Find the forces in all the members of the cantilever type plane pin jointed truss loaded as shown in above fig. Use method of sections.

SET - 1

II B. Tech II Semester Supplementary Examinations, April-2018 STRENGTH OF MATERIALS - II

(Civil Engineering)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any THREE Questions from Part-B

PART -A

1. a) What is Mohr's circle of stresses?
b) Draw springs in series and springs in parallel
c) What are the different types of columns?
d) Define bending stress \&Direct stress
e) What are the stresses in beam subjects to unsymmetrical bending?
f) Define degree of freedom

PART -B

2. Derive expressions for principal stresses, principal planes and max shear stress if there are like direct stresses accompanied by a state of simple shear
3. A shaft transmits 300 kW power at 120 rpm . Determine the necessary diameter of solid circular shaft and the necessary diameter of hollow circular section, the inside diameter being $2 / 3$ of the external diameter. The allowable shear stress is $70 \mathrm{~N} / \mathrm{mm}^{2}$. Taking the density at material as $77 \mathrm{~N} / \mathrm{m}^{3}$, calculate the \%saving in the shaft if hollow shaft is used.
4. A column having a T section with a flange $120 \mathrm{~mm} \times 16 \mathrm{~mm}$ and web $150 \mathrm{~mm} \times$ 16 mm is 3 m long. Assuming the column to be hinged at both ends, find the crippling load by using Euler's formula. $\mathrm{E}=2 \times 10^{6} \mathrm{Kg} / \mathrm{cm}^{2}$
5. A beam of rectangular cross section is subjected to pure bending with a moment of 20 kNm . The trace of the plane of loading is inclined at 45° to the YY axis of the section. Identify the N.A of the section and calculate the bending stress induced at each corner of the beam section

1 of 2
6. a) Explain in brief how stresses in beams due to unsymmetric bending is considered. $(8+8 \mathrm{M})$
b) Explain in brief the method of locating shear centre
7. Determine the forces in all the members of the frame by method of joints.

II B. Tech II Semester Supplementary Examinations, Dec/Jan-2015-16 STRENGTH OF MATERIALS - II

(Civil Engineering)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any THREE Questions from Part-B

PART -A

1. a) Define the term obliquity.
b) What are the springs in series and in parallel?
c) Write the crippling load by Rankine's formula. Mention the each term in the formula.
d) What is the difference between dam and a retaining wall?
e) Define unsymmetrical bending and shear centre.
f) What is a frame? State the difference between perfect frame and imperfect frame?

PART -B

2. a) Derive the normal stress, tangential stress and resultant stress of two mutually perpendicular principal stresses of unequal intensities by Mohr's method.
b) Define and explain maximum strain energy theory.
3. Derive the Torsion equation $T / J=\tau / R=C \Theta / L$
4. a) Derive the equation for the Euler's crippling load for a column when both ends fixed.
b) What is a slenderness ratio?
5. A column is rectangular in cross section $300 \times 400 \mathrm{~mm}$.The column carries an eccentric loading of 360 kN on one diagonal at a distance of quarter diagonal length from a corner. Calculate the stresses at all four corners. Also draw stress distribution diagram for any side.
6. Determine the stresses and deflection for the mid section of the I beam by unsymmetrical method. Also identify the position of the neutral axis
7. Find the reactions in the members by method of joints.

WWW. MANARESULTS.CO.IN

